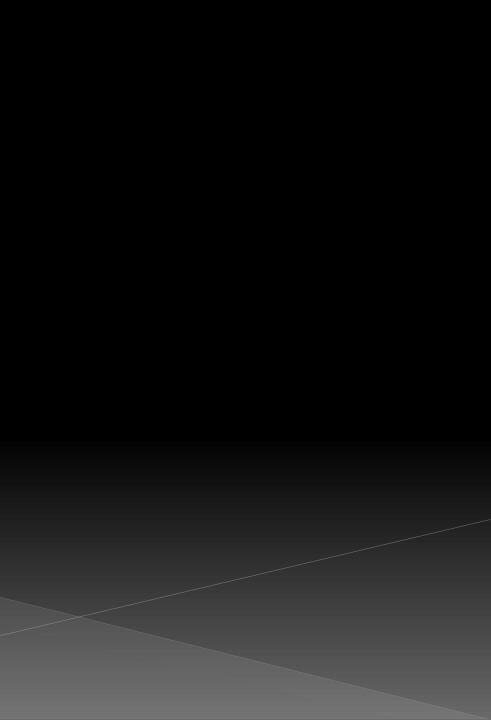
Presentation Outline

- Project Background
- Analysis 1: Implementation of MEP Prefabrication The Step Fing and Francine Clark

 - Analysis 3: Precast Floor Flanks
 Structural Breadth (Will Not Be Discussed)
 - Analysis 4: Isolar Photo Analysis
 - Electrical Breadth
 - Summary
 - Acknowledgements



The Sterling and Francine Clark Art Institute Williamstown, MA

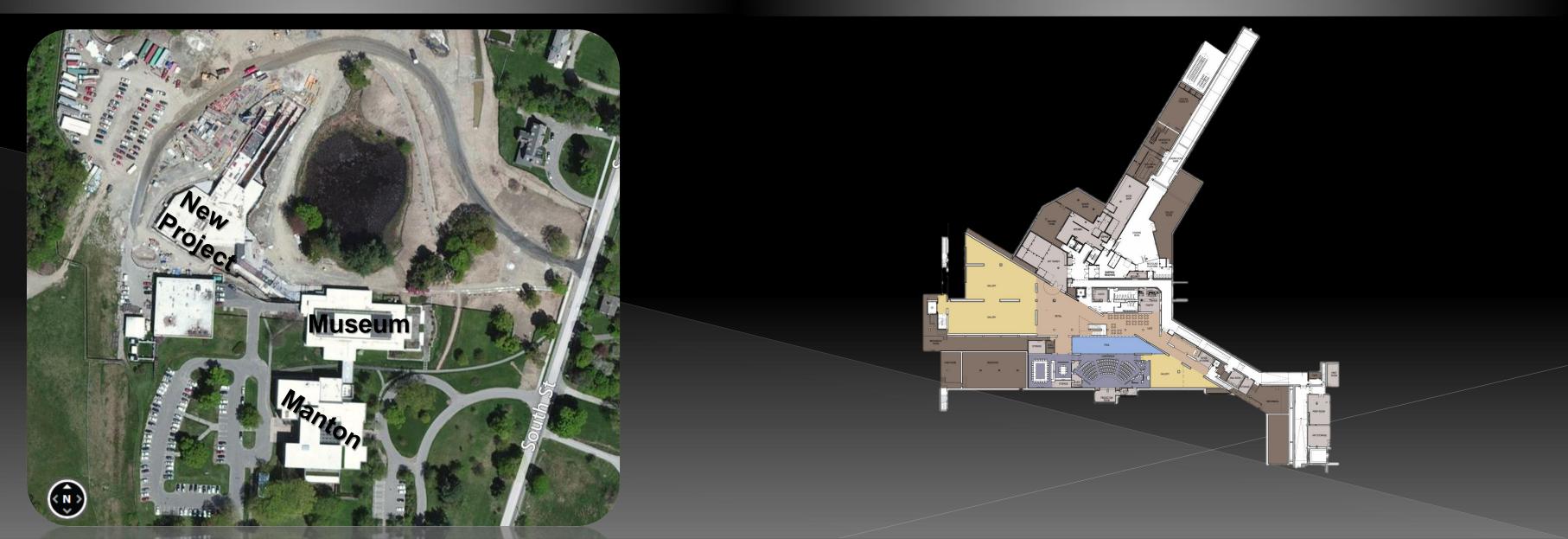
Final Thesis Presentation Mohamed S. Alali **Construction Management** Dr. Rob Leicht April 10th, 2012

Project Background

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Location


- 225 South Street, Williamstown, MA 01267
- Museum/Institutional

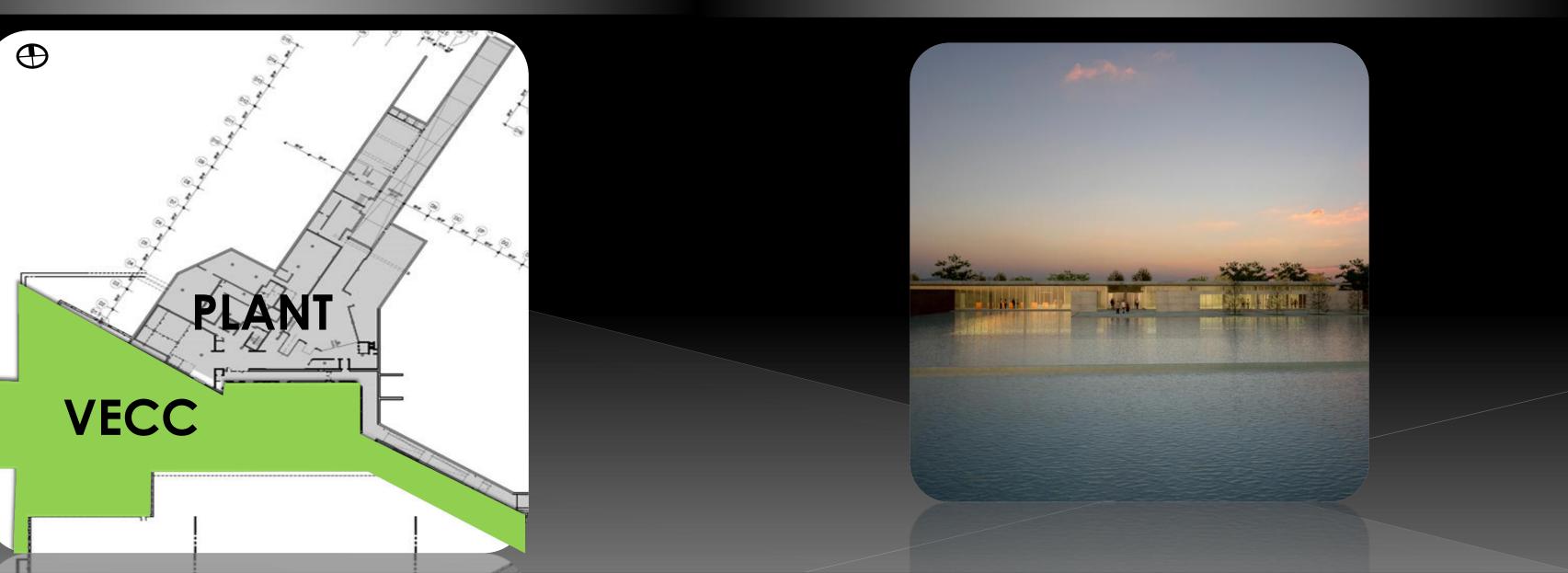
Building Parameters

- 78,800 SF
- 68,150 SF Gross Building Area

Building Parameters

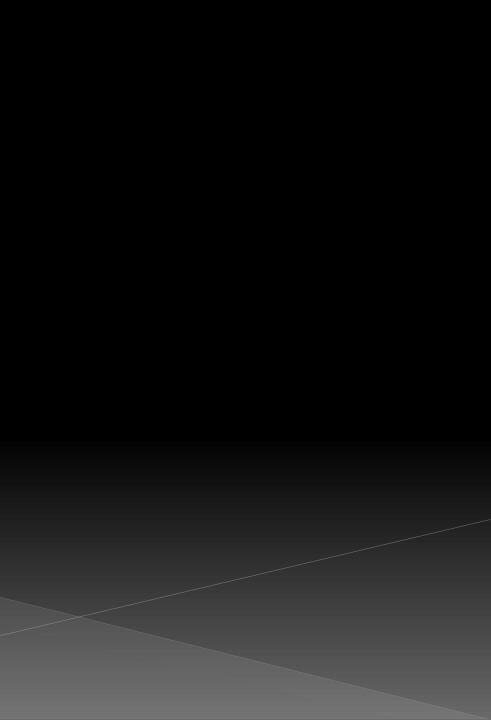
- Cost: \$28 Million GMP
- Delivery Method: Design Bid Build
- Schedule: Jan 2011 Sep 2013
- Architect: Tadao Ando

Project Background



PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements


- CIP Structure
- Glazed Aluminum Curtain Wall On The First Floor
- Construction Phases:
 - Plant
 - VECC

Project Background

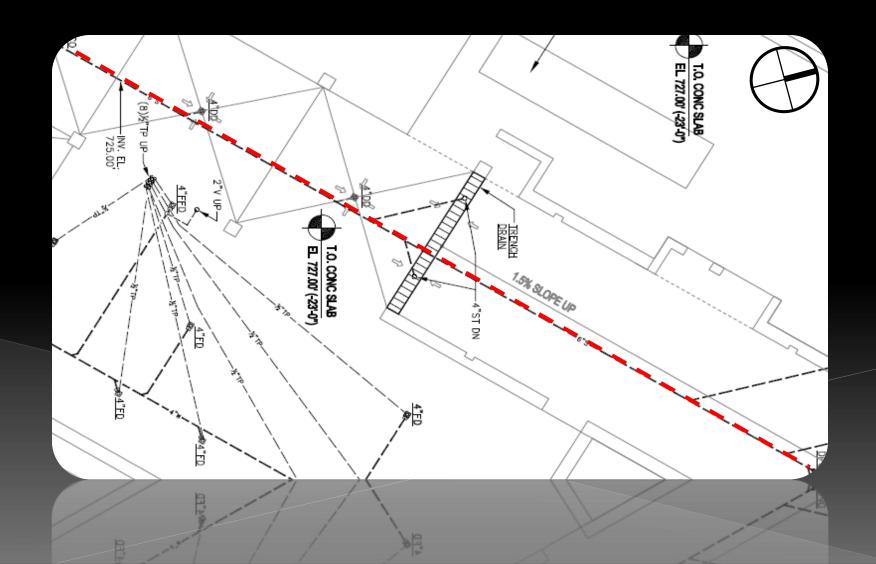
Analysis 1 MEP Prefab

Analysis 1: Implementation of MEP Prefabrication

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
 - Problem & Goal
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

The Problem


- Embedded piping has to be within the middle third of the matslab (30").
- Long runs with 1/8" of pitch exceeds 10".
- Constructability issues, intense rebar.
- Project is behind schedule.

- Put the schedule back on track.
- Potential cost savings.

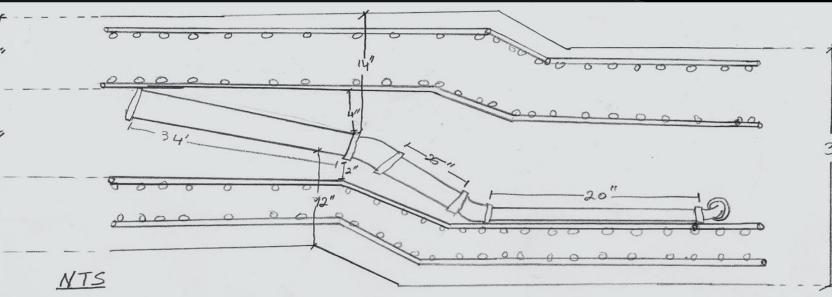
The Sterling and Francine Clark Art Institute Williamstown, MA

The Goal

• Increase accuracy and efficiency.

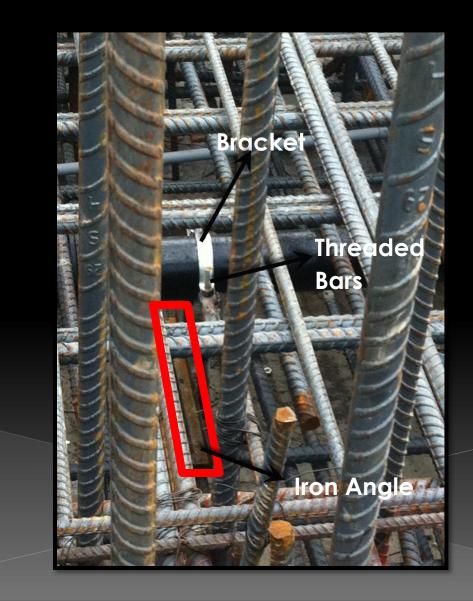
PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of **MEP Prefabrication**
 - Quantity Take-Off
 - Site Challenges
 - Coordination
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary


Quantity Take-Off

- Know what is in the system.
- How the units will be divided.
- Understand Constraints & Complications
 - Max. size of a single unit due to transportation limitations.

Site Challenges


- Intensive amount of rebar.
- Pipe penetration through slab to connections
- Lay, Support, and achieve required Pitch.

- Utilizing 3D Model
 - Clash Detection.
 - In Slab System Location.
 - Where plumbing would penetrate slab.
 - Exact locations reduces conflicts between trades

The Sterling and Francine Clark Art Institute Williamstown, MA

Coordination with Other Trades

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
 - Cost & Schedule
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Prefab Cost Savings

	Current	Prefab
Total	Tot: \$71,680	Tot: \$35,840
Total Savings	N/A	50%

Activ	ity
Area	1

Alcai
Area 2
Area 3
Area 4
Total
Total
Savings

The Sterling and Francine Clark Art Institute Williamstown, MA

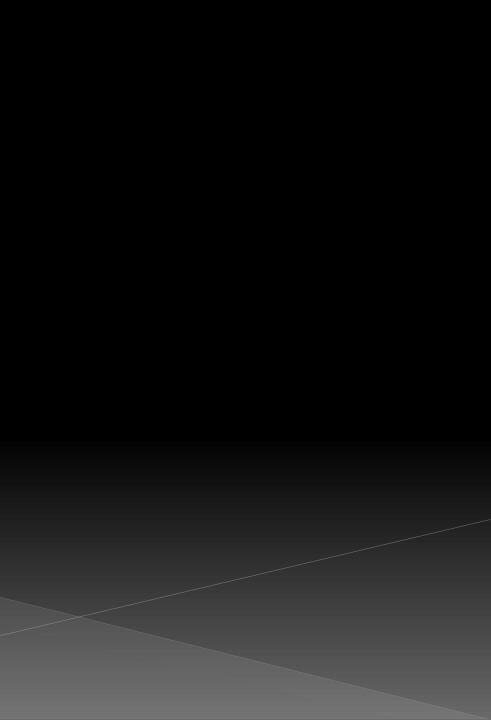
Prefab Schedule Savings

Current System Duration	Prefab Duration	Percent Time Savings
7	3.5 Days	50%
28 Days	14 Days	50%
N/A	3.5 Days	12.5%

- Final Results:
 - Time savings of general conditions cost and critical path.
 - \$14,611 of GC.
 - \$35,840 of labor.
 - Total: \$57,771.

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
 - Conclusion & Recommendation
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary


- Congestion reduction.
- Enhanced safety in the building footprint.
- "3.5" Critical path savings.
- Total of \$57,771 of cost savings.

• It is best to apply the analysis on the building to save time and money.

The Sterling and Francine Clark Art Institute Williamstown, MA

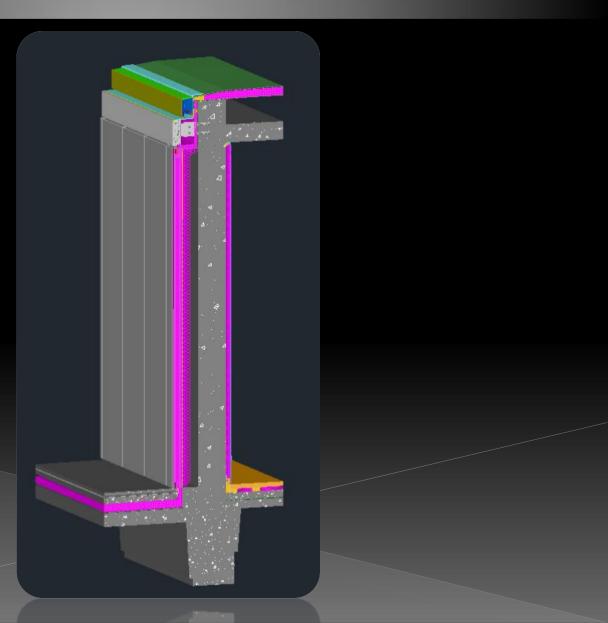
Conclusion & Recommendation

Analysis 2 BIM - Virtual Mockup

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
 - Problem & Goal
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

The Problem


- BIM utilized only in 3D clash detection.
- More BIM uses can BIM used.

- Increase efficiency.
- Add value to the owner and to the building.
- Supporting the physical Mockup will be built.

Analysis 2: BIM – Virtual Mockup

The Sterling and Francine Clark Art Institute Williamstown, MA

The Goal

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
 - Initial Use
 - How Can VM Help?
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary

Initial Use of BIM

- 3D Clash detection.
- To coordinate complex MEP's embedded in the matslab.
- Started on August 2011.

- Quantity take off.
- Resolving design issues (Architect).
- Minimizes RFI's and COR's.
- Building the project twice (GC & Subs).
- Opportunity for the owner to walkthrough virtually.

Analysis 2: BIM – Virtual Mockup

The Sterling and Francine Clark Art Institute Williamstown, MA

How Can Virtual Mockup Help?

• Aids any project's system prefabrication (GC).

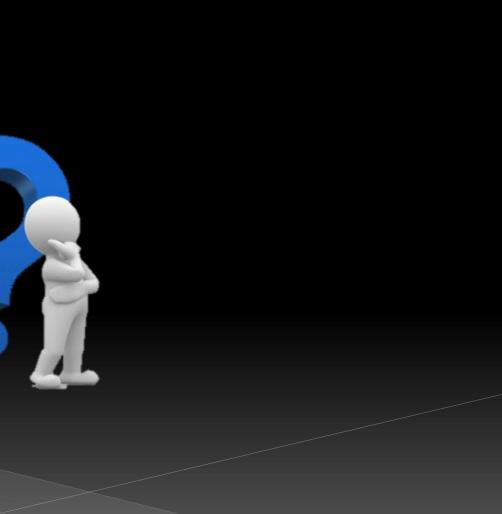


Image courtesy of Google image

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
 - The Process
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Keep in Mind

- Start in the early stages of the project.
- Need to be developed though out the project.
- Ability to manipulate.

- Modeling software (AutoCAD 2012).
- Rendering software (3ds Max Design 2012).
- Choose a section.
- Determining what is in the section.

Analysis 2: BIM – Virtual Mockup

The Sterling and Francine Clark Art Institute Williamstown, MA

The Process

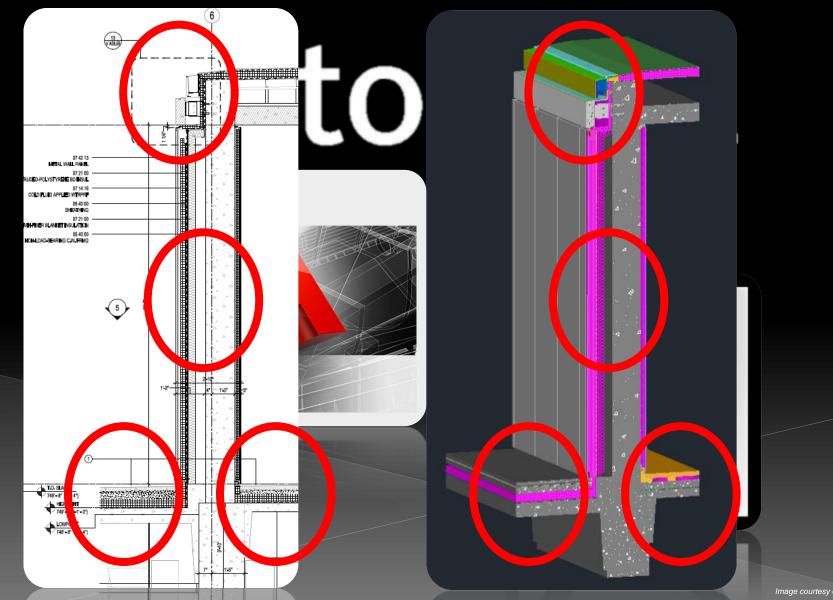


Image courtesy of Google images

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
 - Benefits
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Feedback

- Tagging and tracking.
- Future maintenance.
- Future renovations.

Task

Determining section to me Determining What is in the section Section modeling Total

Analysis 2: BIM – Virtual Mockup

The Sterling and Francine Clark Art Institute Williamstown, MA

Cost Benefits

	Time it took me to	Professional	Professional to take 50% of the time	
	model (Hrs.)	Wage (\$/Hr)	(Hrs.)	Cost
) a 10del	1	\$97	1/2	\$48.5
e	8	\$97	3	\$291
	40	\$97	15	\$1,455
	49	\$97	18 ½	\$1,795

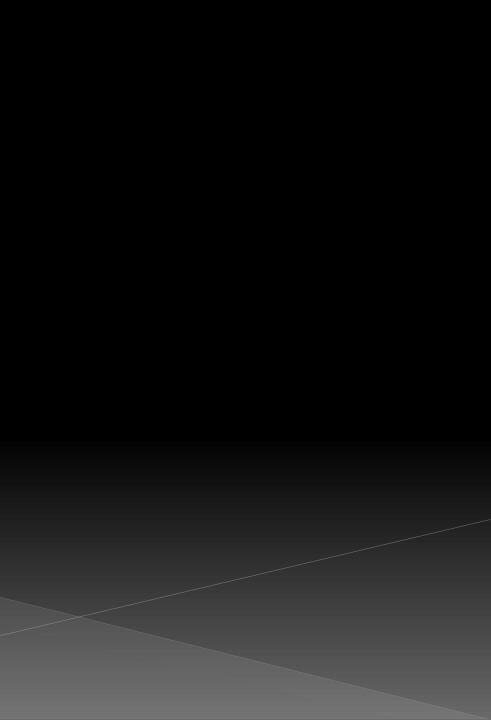
	Foreman	Fore
	Trade	
	Concrete	
	Iron	
	Plumbing	
	Glazing	
	Gypsum	
	Boards	
	Gutter	
	Sheeting	
	Metal Panels	
	Roofer	
	Wood	
	Flooring	
	Sealants	
	WaterProofing	
_	Total	

man Wage	Interpretation Time
(\$/Hr)	Savings (2 Hrs)
\$55.20	\$110.40
\$83.08	\$166.16
\$75.72	\$151.43
\$54.43	\$108.86
\$66.18	\$132.36
\$83.08	\$166.16
\$66.18	\$132.35
\$83.08	\$166.16
\$66.18	\$132.35
\$45.38	\$90.76
\$44.30	\$88.60
\$54.43	\$108.86
	\$1,554.45

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup

 Conclusion & Recommendation


- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels Electrical Breadth
- Summary

• Go with virtual mockup to fix issues in advance and better • Increased efficiency. experience the building. • Increased coordination. • Will benefit the owner in future restaurant. Less RFI's and COR's. • Very low cost, do both. • Better for future renovations and maintenance. • Costs \$240.55 • Virtual Mockups has limitations.

Conclusion & Recommendation

Analysis 3 Precast Roof Planks

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks Problem & Goal
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

The Problem

- Complex geometry.
 - Safety.
 - Congestion.
 - Constructability issues.

- Schedule reduction.

Analysis 3: Precast Roof Planks

The Sterling and Francine Clark Art Institute Williamstown, MA

The Goal

• Increase efficiency and productivity.

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of
 MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
 - Initial Planning & Process
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Initial Planning

- Existing: CIP
- Applied in the VECC 21,450 SQF.
- Can't be applied on the reservoir.
- Choosing a typical bay.

Analysis 3: Precast Roof Planks

The Sterling and Francine Clark Art Institute Williamstown, MA



Image courtesy of Google images

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
 Cost & Schedule
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Schedule

- 3 months lead time.
- 3600 SQF/Day.
- 18 days of critical path.

- More expensive initially.
- Savings from GC offsets increased cost.
- Net savings: \$47,662

Analysis 3: Precast Roof Planks

The Sterling and Francine Clark Art Institute Williamstown, MA

Cost

System	Cost	Extra Cost	Cost Savings	%Extra Cost
Cast In Place	\$165,509	\$47,662	N/A	28.8%
Precast Planks	\$117,908	N/A	\$47,662	N/A

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of
 MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
 - Value Comparison
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Cost
Schedule
Lead Time
Following Tr
LEED
Congestion
Value

Analysis 3: Precast Roof Planks

The Sterling and Francine Clark Art Institute Williamstown, MA

Value Comparison

	Cast In Place	Precast
	\downarrow	↑ \$47,662 Net Savings
	\downarrow	18 Days of Critical Path
	↑ O	\downarrow 3 Months
ades	\checkmark	\uparrow
	\downarrow	\uparrow
	\downarrow Congested	↑ Less Congestion
	GOOD	BEST

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks Disadvantages
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

- Interior Finishing.
- Future renovations.

• Lead time.

Analysis 3: Precast Roof Planks

The Sterling and Francine Clark Art Institute Williamstown, MA

Disadvantages

• Traffic authority.

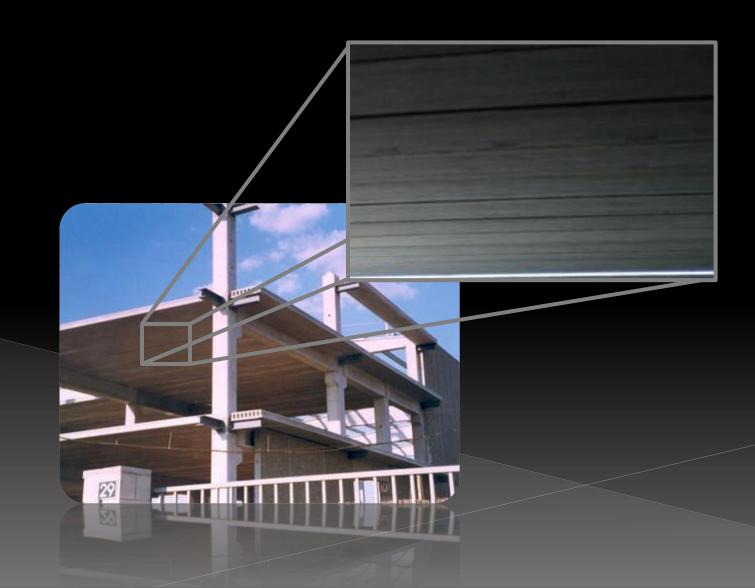
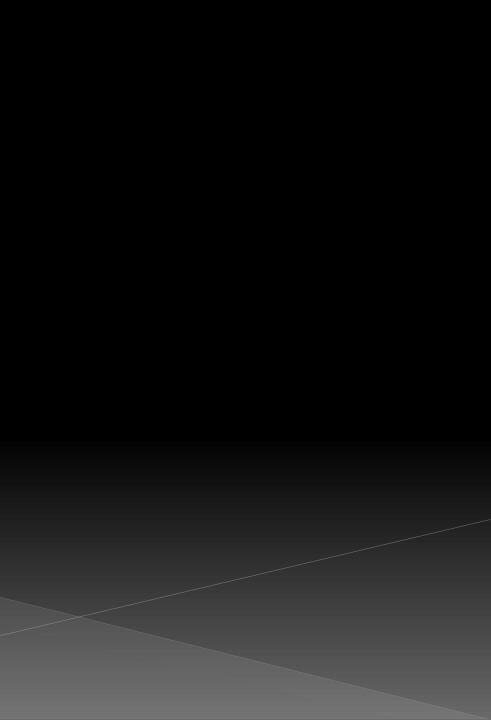


Image courtesy of Google images

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks Conclusion &
 - Recommendation
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary

- Area: 21,450 SQF using 4'x20'
- Saves:
 - 18 days of critical path
 - Net savings: \$47,60.


- It is not recommended to apply the analysis.
- That is due to:
 - Architectural implications.
 - Future renovations.
 - Traffic issues.

Analysis 3: Precast Roof Planks

Conclusion & Recommendation

Analysis 4 Solar PV Panels

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Problem & Goal
 - Electrical Breadth
- Summary
- Acknowledgements

The Problem

- High lighting energy consumption.
- May not achieve LEED Silver.

• Energy cost reduction.

• Aid in achieving LEED goal.

Analysis 4: Solar PV Panels

The Sterling and Francine Clark Art Institute Williamstown, MA

The Goal

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Initial Planning
 - Electrical Breadth
- Summary
- Acknowledgements

Site

- No major shadow issues from surroundings.
- Will be placed at the Manton!
- 24,600 SQF of usable flat roof.

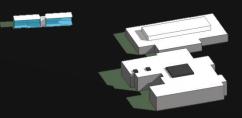
Building Location	N 42° 42' 28.5156" W 73° 12' 54.9806"
Elevation of Roof	32 Feet
Average Sunlight Hrs/Day	4.2
System Orientation	Facing South
System Tilt Angle	42.7°
Summer/Winter Tilt Angle Adj.	± 15°
Spring Equinox (Year 2012)	March 20
Summer Solstice (Year 2012)	June 20
Fall Equinox (Year 2012)	September 22
Winter Solstice (Year 2012)	December 21

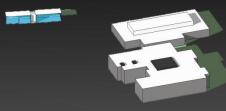
Analysis 4: Solar PV Panels

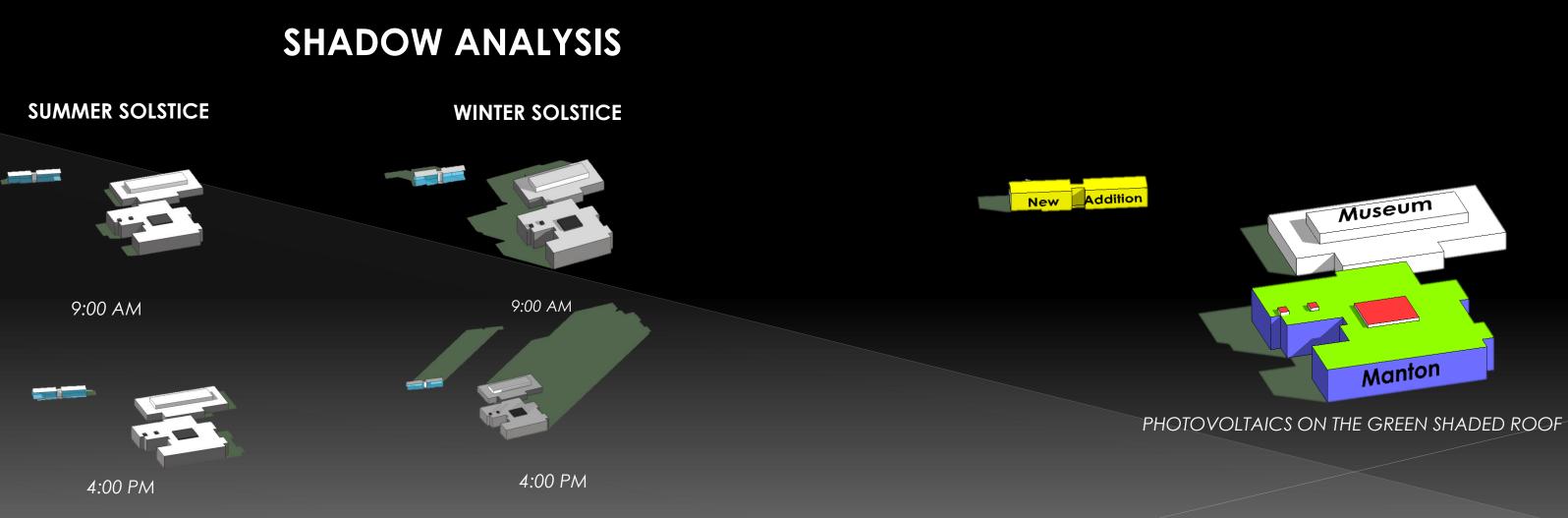
Building Location & Solar Info

The Sterling and Francine Clark Art Institute Williamstown, MA

Image courtesy of Bing Maps




PRESENTATION OUTLINE

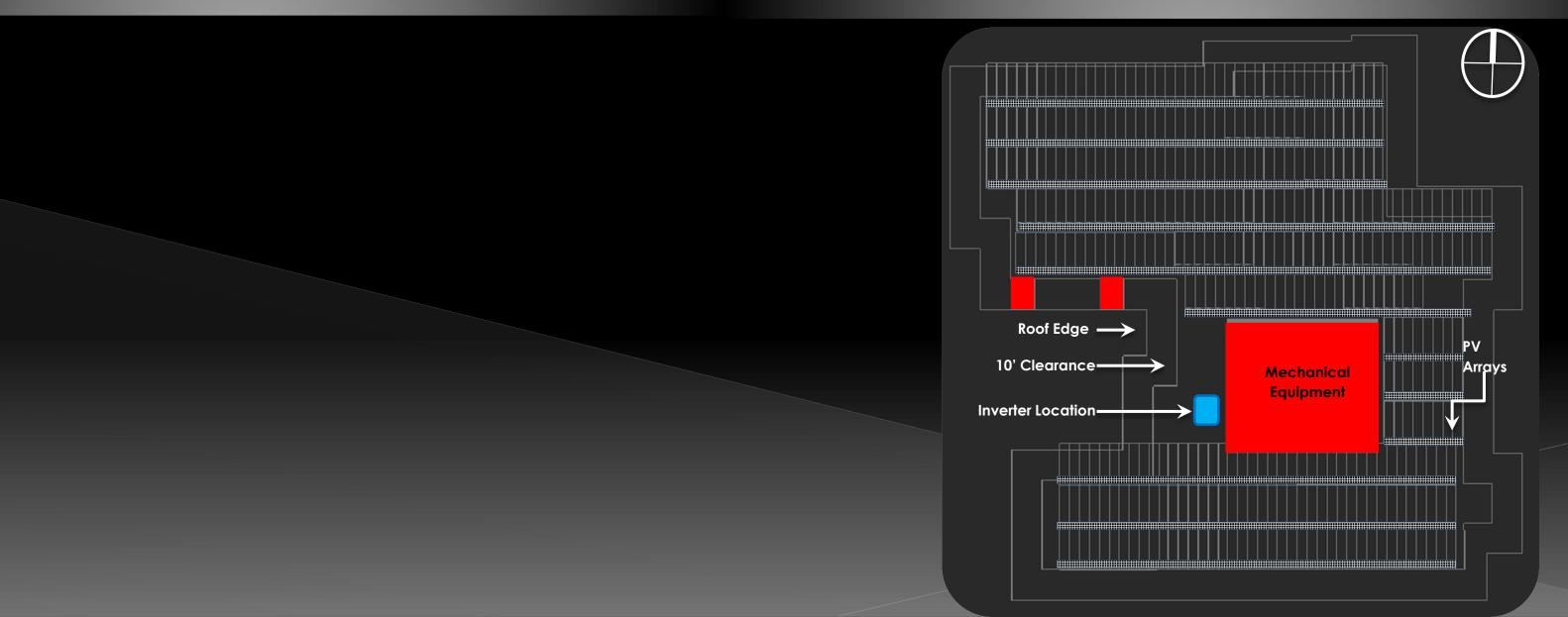

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: Building Information Modeling – Virtual Mock-Up
- Analysis 3: Precast Floor Planks
 - Structural Breadth (Will Not Be Discussed)
- Analysis 4: Solar Photovoltaic Panels
 - Shadow Analysis
- Summary
- Acknowledgements

SPRING/FALL EQUINOX

9:00 AM

4:00 PM

Analysis 4: Solar Photovoltaic Panels

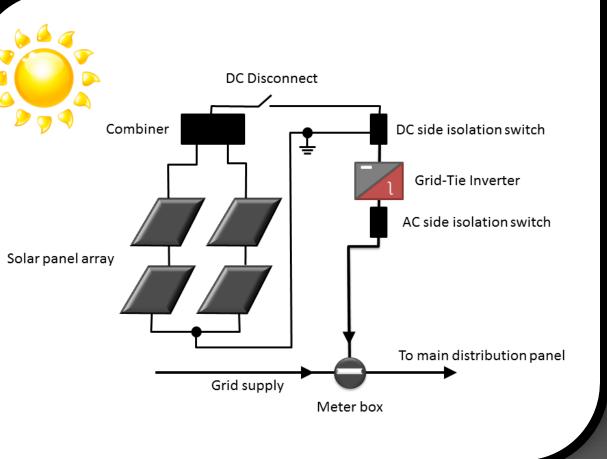

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Energy Reduction
 - Electrical Breadth
- Summary
- Acknowledgements

Realistic Energy Reduction

- Lighting system consumes 1560 kWh/day.
- Based on space:
 - 49 arrays/strings.
 - Enough to power 280.17 kWh/day.
 - Good for lighting in:
 - Café.
 - Two retail spaces.
 - Lobby.
 - Family room.
 - Vestibule.

Analysis 4: Solar PV Panels



- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: Building Information Modeling – Virtual Mock-Up
- Analysis 3: Precast Floor Planks
 - Structural Breadth (Will Not Be Discussed)
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Month	Solar Radiation (kWh/m²/day)	AC Energy (kWh)	Energy Value (\$)
1	2.93	6852	856.77
2	3.69	7891	986.69
3	4.59	10387	1298.79
4	4.78	10100	1262.90
5	5.08	10620	1327.92
6	5.01	9765	1221.02
7	5.33	10550	1319.17
8	5.11	10326	1291.16
9	4.80	9661	1208.01
10	3.87	8282	1035.58
11	2.62	5536	692.22
12	2.37	5414	676.97
Year	4.19	105,383	13,177.1

Analysis 4: Solar Photovoltaic Panels

The Sterling and Francine Clark Art Institute Williamstown, MA

Summary of Calculations

Adequate AC Energy for family room, lobby, café, two retail spaces, and a vestibule

- 105,383 kWh Produced by 392 panels (240 Wdc) \bullet
 - 100,861.2 kWh/year Needed.
- Savings of \$13177.1 Annually on Electric Bill
- Covers 17.85% of Total Electric

Demand

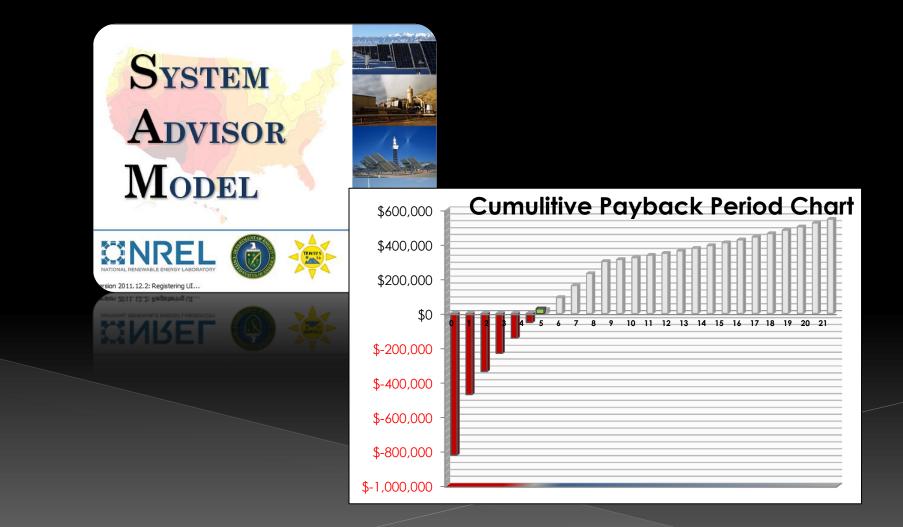
PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
 - Cost
- Summary
- Acknowledgements

Initial Cost

- Gross System cost: \$781,850
- System cost: \$261,910
- Installation cost: \$517,440
- Transportation cost: \$2,500

• New net cost: \$227,646


- Federal tax credit: \$234,555

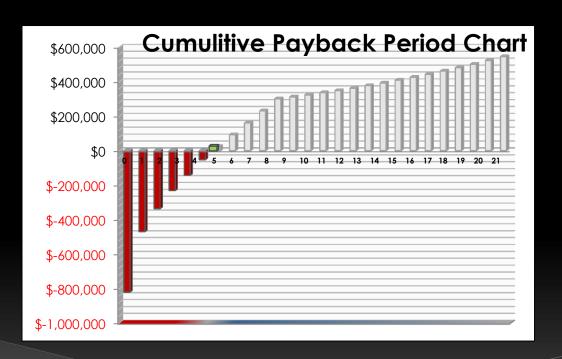
Analysis 4: Solar PV Panels

The Sterling and Francine Clark Art Institute Williamstown, MA

Cost After Incentives and Rebates

- MA Solar Renewable Energy Credits: \$316,149
- MA Renewable Energy Income Tax Credit: \$1,000
- TOT: \$551,704

PRESENTATION OUTLINE


- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
 - Conclusion & Recommendation
- Summary

- PV's will be installed on the Manton's roof.
- Usable flat roof area: 24,600 SQF.
- 49 arrays, 8 panels/array, 240 Wdc/panel.
- 392 pales producing 105,383 kWh/year.
- Net system cost \$227,646.
- Payback period is in 6 years.
- Savings over 25 years: \$544,520.

The Sterling and Francine Clark Art Institute Williamstown, MA

Conclusion & Recommendation

• It is best to apply the analysis on the building to save energy, energy costs, and environment.

•

•

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

- Analysis 1: MEP Prefabrication • Increased efficiency and safety. • Less congestion. • Utilizing 3D BIM model aids coordination. • Saves time and money. Analysis 2: BIM – Virtual Mockup • Increased coordination and efficiency. • Less routine.
- Beneficial for all project parties.

Analysis 4: Solar PV Panels

Summary

Analysis 3: Precast Roof Planks

• Disadvantages impeded the analysis.

- Architectural implications.
- Town size.

Analysis 4: PV Panels

Feasibility was possible due to the governmental

monetary supports.

• Payback period of 6 years.

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

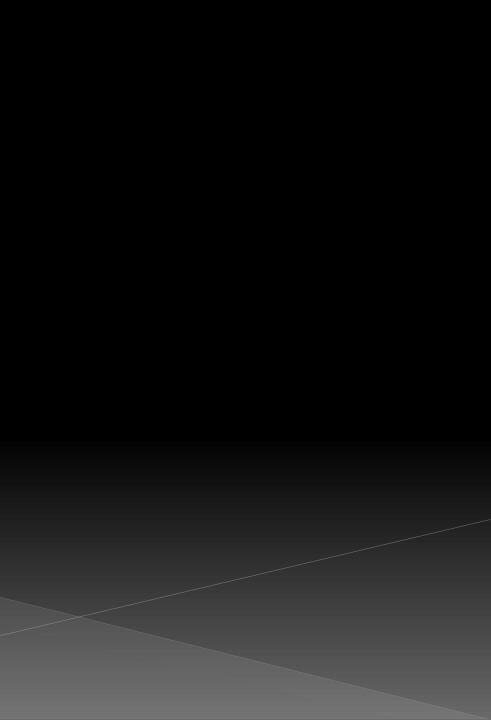
- H. H. Sheikh Zayed Bin Sultan Al Nahyan
- H. H. Sheikh Khalifa Bin Zayed Al Nahyan
- The Scholarships Office

- Prof. Moses Ling
 Dr. Robert Leicht • Dr. David Riley
- Dr. Kevin Parfitt
 Prof. Robert Holland
 Prof. Paul Bowers

Analysis 3: Precast Roof Planks

The Sterling and Francine Clark Art Institute Williamstown, MA

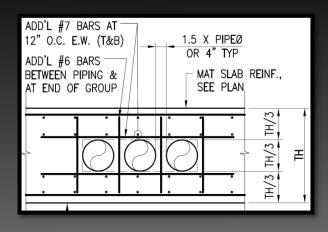
Acknowledgements


Family

Friends

AE Classmates

Appendices



PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of **MEP** Prefabrication
 - Cost & Schedule
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Prefab Cost Savings

	Current	Prefab
Total	Tot: \$71,680	Tot: \$35,840
Total Savings	N/A	50%

A	ct	ΊV	it	V

Area 1
Area 2
Area 3
Area 4
Total
Total
Savings

The Sterling and Francine Clark Art Institute Williamstown, MA

Prefab Schedule Savings

Current System Duration	Prefab Duration	Percent Time Savings	
7	3.5 Days	50%	
7	3.5 Days	50%	
7	3.5 Days	50%	
7	3.5 Days	50%	
28 Days	14 Days	50%	
N/A	3.5 Days	12.5%	

• Final Results:

- 15% less time to build.
- 50% less time to install.
- 3 days of crew cost and time savings (time to build it)
- 14 days total float (building and installing)
- "**3.5**" days general conditions cost and critical path savings.
 - \$14,611 of GC.
 - \$35,840 of labor.
 - Total: \$57,771.

Analysis 1: Implementation of MEP Prefabrication

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
 - Cost & Schedule
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Activity

Install In-Slab Plumbing Area Install In-Slab Plumbing Area : Install In-Slab Plumbing Area Install In-Slab Plumbing Area Total Total Savings

	Table 5-3: Prefabrication Schedule Savings							
	Original Schedule		Installation	Percent	Original	Prefab.		
	Duratio	Start	Finish	Time	Time	Cost	Cost	
	n (Days)			Savings	Savings			
1	7	18-Nov-11	30-Nov-11	3.5 Days	50%	\$17,920	\$8,960	
2	7	20-Dec-11	29-Dec-11	3.5 Days	50%	\$17,920	\$8,960	
3	7	06-Dec-11	14-Dec-11	3.5 Days	50%	\$17,920	\$8,960	
4	7	05-Apr-12	13-Apr-12	3.5 Days	50%	\$17,920	\$8,960	
	28 Days	18-Nov-11	13-Apr-12	14 Days	50%	Tot: \$71,680	Tot: \$35,840	
	N/A			3.5 Days	12.5%	N/A	50%	

	Table 5-2: Prefabrication Onsite Vs. Offsite Time Savings							
Size	Length	Length Time To Build on		Time	Percent			
		Site	Prefab in	Savings	Time			
			Shop		Saving			
4"	863.72 LF	15.7 Days	13.3 Days	2.4 Days	15%			
6"	194.57 LF	2.7 Days	2.3 Days	0.4 Days	15%			
8"	106.47 LF	1.8 Days	1.5 Days	0.3 Days	15%			
Tot.	1164.76	20.2 Days	17.1 Days	3 Days	15%			
	LF							

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of
 MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
 Cost & Schedule
- Analysis 4: Solar PV Panels
 - Electrical Breadth
- Summary
- Acknowledgements

Schedule

Table 6-1: Detailed Schedule of New And Existing Systems								
Task Name	Cast In Place			Precast			Time	Percent Time
	Duration	Start	Finish	Duration	Start	Finish	Savings	Savings
Area# 1	97 days	Sat 11/19/11	Mon 4/2/12	73 days	Sat 11/19/11	Tue 2/28/12	24 Days	24.74%
FRP Superstructure	61 days	Sat 11/19/11	Fri 2/10/12	61 days	Sat 11/19/11	Fri 2/10/12	0 Days	0%
Deck FRP/Erection	26 days	Mon 2/13/12	Mon 3/19/12	2 days	Mon 2/13/12	Tue 2/14/12	24 Days	92.3 %
Waterproofing	10 days	Tue 3/20/12	Mon 4/2/12	10 days	Wed 2/15/12	Tue 2/28/12	0 Days	0%
Area# 2	135 days	Wed 11/2/11	Tue 5/8/12	112 days	Wed 11/2/11	Tue 4/5/12	23 Days	23.71%
FRP Superstructure	99 days	Wed 11/2/11	Mon 3/19/12	99 days	Wed 11/2/11	Mon 3/19/12	0 Days	0%
Deck FRP/Erection	26 days	Tue 3/20/12	Tue 4/24/12	3 days	Tue 3/20/12	Thu 3/22/12	23 Days	88.46%
Waterproofing	10 days	Wed 4/25/12	Tue 5/8/12	10 days	Fri 3/23/12	Thu 4/5/12	0 Days	0%
Area# 3	98 days	Wed 10/26/11	Fri 3/9/12	85 days	Wed 10/26/11	Tue 2/21/12	13 Days	13.40%
FRP Superstructure	74 days	Wed 10/26/11	Mon 2/6/12	74 days	Wed 10/26/11	Mon 2/6/12	0 Days	0%
Deck FRP/Erection	14 days	Tue 2/7/12	Fri 2/24/12	1 day	Tue 2/7/12	Tue 2/7/12	13 Days	92.86%
Waterproofing	10 days	Mon 2/27/12	Fri 3/9/12	10 days	Wed 2/8/12	Tue 2/21/12	0 Days	0%
Area# 4	93 days	Wed 2/29/12	Fri 7/6/12	70 days	Wed 2/29/12	Tue 6/5/12	23 Days	23.71%
FRP Superstructure	58 days	Wed 2/29/12	Fri 5/18/12	58 days	Wed 2/29/12	Fri 5/18/12	0 Days	0%
Deck FRP/Erection	26 days	Mon 5/21/12	Mon 6/25/12	2 days	Mon 5/21/12	Tue 5/22/12	23 Days	88.46%
Waterproofing	10 days	Mon 6/25/12	Fri 7/6/12	10 days	Wed 5/23/12	Tue 6/5/12	0 Days	0%

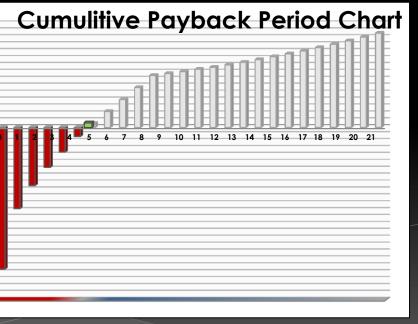
Analysis 3: Precast Roof Planks

System	Cost	Extra Cost	Cost Savings	%Extra Cost	
Cast In Place	\$165,509	\$47,662	N/A	28.8%	
Precast Planks	\$117,908	N/A	\$47,662	N/A	

PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
 - Cost
- Summary
- Acknowledgements

Initial Cost

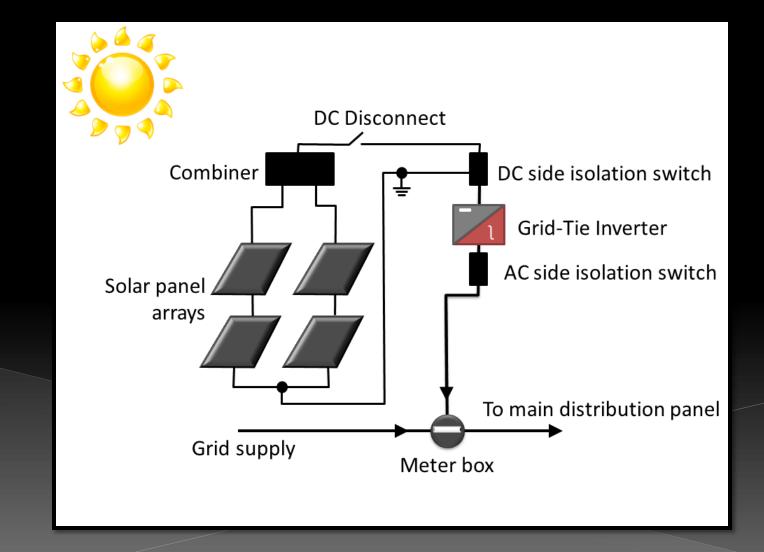

- Gross System cost: \$781,850
- System cost: \$261,910
- Installation cost: \$517,440
- Transportation cost: \$2,500

Cost After Incentives and Rebates New net cost: \$227,646

- MA Solar Renewable Energy Credits: \$316,149
- Federal tax credit: \$234,555
- MA Renewable Energy Income Tax Credit: \$1,000
- TOT: \$551,704

Analysis 4: Solar PV Panels

Year	Cumulative payback		and the second
0	-\$820,658.00		
1	-\$469,370.00	System	
2	-\$336,054.00	DISIEW	to
3	-\$230,924.00		
4	-\$142,153.00	ADVISOR	
5	-\$52,010.80		
6	\$23,754.70	Model	
7	\$92,673.40		
8	\$160,551.00		\$600,000
9	\$229,917.00		* 400.000
10	\$300,804.00		\$400,000
11	\$311,700.00	NATIONAL RENEWABLE ENERGY LABORATORY	\$200,000
12	\$323,265.00	ersion 2011.12.2: Registering UI	<i>q</i>
13	\$335,519.00		\$0
14 15	\$348,483.00		¢ 000 000
16	\$362,179.00		\$-200,000
17	\$376,628.00 \$391,852.00		\$-400,000
17	\$407,876.00		
19	\$424,723.00		\$-600,000
20	\$442,417.00		\$-800,000
21	\$460,985.00		φ-ουυ,υυυ
22	\$480,452.00		\$-1,000,000
23	\$500,845.00		
24	\$522,191.00		
25	\$544,520.00		


PRESENTATION OUTLINE

- Project Background
- Analysis 1: Implementation of
 MEP Prefabrication
- Analysis 2: BIM Virtual Mockup
- Analysis 3: Precast Floor Planks
- Analysis 4: Solar PV Panels
 - Electrical Breadth
 - Cost
- Summary
- Acknowledgements

DC
 DC
 disc
 Grid

Analysis 4: Solar PV Panels

wires	1.	AC wires
switch,	2.	AC switch
connect	3.	Meter box (grid and PV supplies connects
mbiner		here)
d-tie inverter		

